问题 解答题
已知z、w、x为复数,且x=(1+3i)•z,w=
z
2+i
且|w|=5
2

(1)若w为大于0的实数,求复数x.
(2)若x为纯虚数,求复数w.
答案

(1)∵x=(1+3i)•z,∴z=

x
1+3i

若w为大于0的实数,

∵w=

z
2+i
=
x
(1+3i)(2+i)
=
x
-1+7i
,|w|=5
2

则有 5

2
=
x
-1+7i
,∴x=-5
2
+35
2
i.

(2)若x为纯虚数,设x=bi,b≠0.

由(1)可得 |

x
-1+7i
|=|
bi
-1+7i
|
=5
2
,∴b=±50.

∴w=

x
-1+7i
=
50i
-1+7i
=7-i,或w=
x
-1+7i
=
-50i
-1+7i
=-7+i.

解答题
单项选择题 A1型题