问题
解答题
已知z、w、x为复数,且x=(1+3i)•z,w=
(1)若w为大于0的实数,求复数x. (2)若x为纯虚数,求复数w. |
答案
(1)∵x=(1+3i)•z,∴z=
. x 1+3i
若w为大于0的实数,
∵w=
=z 2+i
=x (1+3i)(2+i)
,|w|=5x -1+7i
,2
则有 5
=2
,∴x=-5x -1+7i
+352
i.2
(2)若x为纯虚数,设x=bi,b≠0.
由(1)可得 |
|=|x -1+7i
|=5bi -1+7i
,∴b=±50.2
∴w=
=x -1+7i
=7-i,或w=50i -1+7i
=x -1+7i
=-7+i.-50i -1+7i