问题
解答题
有一堆玻璃球,其中有一个较重的是次品,王老师告诉大家:若用天平称,至少称3次就一定能找出这个较重的玻璃球.这堆玻璃球可能有多少个?
答案
根据天平平衡原理,(1)如果有3个玻璃球,最少需要1次能够找出次品:把3分成1、1、1,在天平两边各放1个,平衡,剩下的是次品,不平衡,下降的一方是次品;如果此时再多出1个玻璃球则最少需要2次才能找出次品;
(2)若有3×3=9个玻璃球,则最少需要2次找出次品:把9分成3、3、3,在天平两边各放一份,平衡,剩下的一份中有次品;不平衡,次品在下降的一边,再按照上面(1)的方法进行二次测量即可;如果此时再多出1个玻璃球则最少需要3次才能找出次品;
(3)若有3×3×3=27个玻璃球,则最少需要3次找出次品:把27分成9、9、9,在天平两边各放一份,平衡,剩下的一份中有次品;不平衡,次品在下降的一边,再按照上面(2)的方法进行二次测量即可;如果此时再多出1个玻璃球则最少需要4次才能找出次品;
据上述推算可得:当玻璃球个数多于9个,少于28个时,至少需要称量3次找出次品,所以玻璃球的个数可能是10~27这几个数.
答:玻璃球的个数可能是10、11、12、13…26、27.