问题
填空题
用二分法求函数f(x)在区间(2,4)上的近似解,验证f(2)•f(4)<0,给定精确度ɛ=0.01,取区间(2,4)的中点x1=
|
答案
由题意可知:对于函数y=f(x)在区间[2,4]上,
有f(2)•f(4)<0,
利用函数的零点存在性定理,所以函数在(2,4)上有零点.
取区间的中点中点x1=
=3,2+4 2
∵计算得f(2)•f(x1)<0,
∴利用函数的零点存在性定理,函数在(2,3)上有零点.
故答案为:(2,3).