问题
填空题
已知an=
|
答案
an=
(2x+1)dx=(x2+x)∫ n0
=n2+n| n0
∴
=1 an
=1 n2+n
=1 n(n+1)
-1 n 1 n+1
∴数列{
}的前n项和为Sn=1 an
+1 a1
+…+1 a2
=1-1 an
+1 2
-1 2
+…+1 3
-1 n
=1-1 n+1
=1 n+1 n n+1
又bn=n-33,n∈N*,
则bnSn=
×(n-33)=n+1+n n+1
-35≥234 n+1
-35,等号当且仅当n+1+34
,即n=34 n+1
-1时成立,34
由于n是正整数,且
-1∈(4,5),后面求n=4,n=5时bnSn的值34
当n=4时,bnSn=
×(n-33)=-n n+1
;当n=5时,bnSn=106 5
×(n-33)=-n n+1 70 3
由于-
>-106 5
,故bnSn的最小值为-70 3 70 3
故答案为-70 3