问题
解答题
观察下列各式及验证过程:
(1)按照上述三个等式及其验证过程中的基本思想,猜想
(2)针对上述各式反映的规律,写出用n(n为任意的自然数,且n≥2)表示的等式,并给出证明. |
答案
(1)
=
(1 4
-1 5
)1 6 1 5 5 24
验证:
=
(1 4
-1 5
)1 6
=1 4×5×6
=5 4×52×6 1 5
;5 24
(2)
=
(1 n
-1 n+1
)1 n+2 1 n+1
或n+1 (n+1)2-1
=
(1 n
-1 n+1
)1 n+2 1 n+1 n+1 n•(n+2)
验证:
=
(1 n
-1 n+1
)1 n+2
=1 n(n+1)(n+2)
=n+1 n(n+1)2(n+2) 1 n+1
.n+1 n(n+2)