问题 填空题
观察下列等式:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
+
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12


请你根据以上规律,写出第n个等式______.
答案

∵观察下列等式:

1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
+
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

∴第n个等式是

1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1+
1
n(n+1)

故答案为:

1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1+
1
n(n+1)

多项选择题
填空题