问题
填空题
数列{an}的前n项的和Sn=(n+1)2+λ,则数列{an}为等差数列的充要条件是λ=______.
答案
由于Sn=(n+1)2+λ可得当n=1时,a1=S1=4+λ,
当n≥2时,an=Sn-Sn-1=(n+1)2+λ-[n2+λ]=2n+1,
若数列{an}为等差数列,
则有a2-a1=a3-a2=2,即5-(4+λ)=2,
解出λ=-1.
故答案为:-1.
数列{an}的前n项的和Sn=(n+1)2+λ,则数列{an}为等差数列的充要条件是λ=______.
由于Sn=(n+1)2+λ可得当n=1时,a1=S1=4+λ,
当n≥2时,an=Sn-Sn-1=(n+1)2+λ-[n2+λ]=2n+1,
若数列{an}为等差数列,
则有a2-a1=a3-a2=2,即5-(4+λ)=2,
解出λ=-1.
故答案为:-1.