问题 填空题

.观察下列各式:(x-1)(x+1)=x2―1;(x―1)(x2x+1)=x3―1;(x―1)(x3x2x+1)

x4-1……;根据前面各式的规律可得到(x-1)(xnxn-1xn-2+…+x+1)=______.

答案

xn+1-1

分析:观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.

解:(x-1)(xn+xn-1+…x+1)=xn+1-1.

单项选择题
单项选择题