问题 计算题

如图甲所示,一竖直平面内的轨道由粗糙斜面AD和光滑圆轨道DCE组成,ADDCE相切于D点,C为圆轨道的最低点,将一小物块置于轨道ADC上离地面高为H处由静止下滑,用力传感器测出其经过C点时对轨道的压力N,改变H的大小,可测出相应的N的大小,NH的变化关系如图乙折线PQI所示(PQQI两直线相连接于Q点),QI反向延长交纵轴于F点(0,5.8 N),重力加速度g取10m/s2,求:

(1)小物块的质量m

(2)圆轨道的半径及轨道DC所对应的圆心角θ;(可用角度的三角函数值表示)

(3)小物块与斜面AD间的动摩擦因数μ。

答案

解:(1)如果物块只在圆轨道上运动,则由动能定理得

mgHmv2

解得v

由向心力公式Nmgm

NmmgHmg

结合PQ直线可知mg=5N得

m=0.5 kg。

(2)由图像可知=10得R=1m

cosθ=0.8,θ=37 °

(3)如果物块由斜面上滑下,由动能定理得

mgHμmgcosθmv2

解得mv2=2mgHmg(H-0.2)

由向心力公式Nmgm

Nmmg

Hμmgmg

结合QI直线知μmgmg=5.8

解得μ=0.3

选择题
单项选择题