问题
解答题
设一组数据是x1,x2,…,xn,它们的平均数是
(Ⅰ)证明:方差也可表示为s2=
(Ⅱ)求满足方程x2+(y-1)2+(x-y)2=
|
答案
(1)∵s2=
[(x1-1 n
)2+(x2-. x
)2+…+(xn-. x
)2],. x
=
[x12+(1 n
) 2-2x1. x
+x22+(. x
) 2-2x2. x
+…+xn2+(. x
) 2-2xn. x
],. x
=
(x12+x22+…+xn2)+1 n
((1 n
) 2+(. x
) 2+…+(. x
) 2)+. x
(-2x11 n
-2x2. x
-…-2xn. x
],. x
=
(x12+x22+…+xn2)+(1 n
) 2+. x
(-2x11 n
-2x2. x
-…-2xn. x
],. x
=
(x12+x22+…+xn2)+(1 n
) 2-2. x . x
(x1+x2+…+xn],1 n
=
(x12+x22+…+xn2)-(1 n
) 2,. x
∴s2=
(1 n
+x 21
+…+x 22
)-x 2n
2;. x
当x1=x2=…=xn=
时,. x
s2=(
) 2-(. x
) 2=0,. x
∴此时方差s2取最小值0;
(2)设数据-x,(y-1),x-y的平均数为:
=. a
[(-x)+(y-1)+(x-y)],1 3
=-
,1 3
方差s2=
[x2+(y-1)2+(x-y)2]-(1 3
)2=. a
-(-1 9
)2,1 3
当且仅当-x=y-1=x-y=
=-. a
时,1 3
s2=0,
此时x=
,y=1 3
.2 3