问题 解答题
设一组数据是x1,x2,…,xn,它们的平均数是
.
x
,方差s2=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
]

(Ⅰ)证明:方差也可表示为s2=
1
n
(
x21
+
x22
+…+
x2n
)-
.
x
 
2
;并且s2≥0,当x1=x2=…=xn=
.
x
时,方差s2取最小值0;
(Ⅱ)求满足方程x2+(y-1)2+(x-y)2=
1
3
的一切实数对(x,y).
答案

(1)∵s2=

1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
],

=

1
n
[x12+(
.
x
) 2
-2x1
.
x
+x22+(
.
x
) 2
-2x2
.
x
+…+xn2+(
.
x
) 2
-2xn
.
x
],

=

1
n
(x12+x22+…+xn2)+
1
n
(
.
x
) 2
+(
.
x
) 2
+…+(
.
x
) 2
)+
1
n
(-2x1
.
x
-2x2
.
x
-…-2xn
.
x
],

=

1
n
(x12+x22+…+xn2)+(
.
x
) 2
+
1
n
(-2x1
.
x
-2x2
.
x
-…-2xn
.
x
],

=

1
n
(x12+x22+…+xn2)+(
.
x
) 2
-2
.
x
1
n
(x1+x2+…+xn],

=

1
n
(x12+x22+…+xn2)-(
.
x
) 2

s2=

1
n
(
x21
+
x22
+…+
x2n
)-
.
x
 
2

当x1=x2=…=xn=

.
x
时,

s2=(

.
x
) 2-(
.
x
) 2
=0,

∴此时方差s2取最小值0;

(2)设数据-x,(y-1),x-y的平均数为:

.
a
=
1
3
[(-x)+(y-1)+(x-y)],

=-

1
3

方差s2=

1
3
[x2+(y-1)2+(x-y)2]-(
.
a
2=
1
9
-(-
1
3
2

当且仅当-x=y-1=x-y=

.
a
=-
1
3
时,

s2=0,

此时x=

1
3
,y=
2
3

填空题
填空题