问题
单项选择题
设函数p(x),q(x),f(x)连续,而y1,y2,y3都是方程y"+p(x)y'+q(x)y=f(x)的解,则该方程必定还有解
A.y1+y2-y3.
B.y1-y2-y3.
C.-y1-y2-y3.
D.y1+y2+y3.
答案
参考答案:A
解析:[分析] 选项(A)正确.
事实上,
(y1+y2-y3)"+p(x)(y1+y2一y3)'+q(x)(y1+y2-y3)
=(y"1+p(x)y'1+q(x)y1)+(y"2+p(x)y'2+q(x)y2)-(y"3+p(x)y'3+q(x)y3)
=f1(x)+f2(x)-f3(x)
=f(x).
故y1+y2-y3也为方程y"+p(x)y'+q(x)y=f(x)的解.