问题 解答题
描述一组数据的离散程度,我们可以用“极差”、“方差”、“平均差”[平均差公式为T=
1
n
(|x1-
.
x
|+|x2-
.
x
|+…+|xn+
.
x
|)
],现有甲、乙两个样本,
甲:13,11,15,10,16;
乙:11,16,6,13,19
(1)分别计算甲、乙两个样本的“平均差”,并根据计算结果判断哪个样本波动较大.
(2)分别计算甲、乙两个样本的“方差”,并根据计算结果判断哪个样本波动较大.
(3)以上的两种方法判断的结果是否一致?
答案

(1)甲组的平均数为(13+11+15+10+16)÷=13,

T=(0+2+2+3+3)÷5=2,

乙组的平均数为(11+16+6+13+19)÷5=13,

T=(2+3+7+0+6)÷5=3.6.

3.6>2,

则乙样本波动较大.

(2)甲的方差=

1
5
[(13-13)2+(11-13)2+(15-13)2+(10-13)2+(16-13)2]=5.2.

乙的方差=

1
5
[(11-13)2+(16-13)2+(6-13)2+(13-13)2+(19-13)2]=19.6.

S2甲
S2乙

∴乙样本波动较大;

(3)通过(1)和(2)的计算,结果一致.

单项选择题
名词解释