问题 解答题

分解因式:

(1)(2x2﹣3x+1)2﹣22x2+33x﹣1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1﹣x﹣y)﹣1;

(4)(x+3)(x2﹣1)(x+5)﹣20.

答案

(1)x(2x﹣3)(2x+3)(x﹣3)

(2)(x2+4x+1)(x2+3x+1)

(3)(x+y﹣1)(x2+y2+x+y+1)

(4)(x2+4x+5)(x2+4x﹣7)

题目分析:(1)把2x2﹣3x+1看成整体,构造和它有关的式子,然后进一步分解;

(2)由x的最高指数,联想到[(x+1)2]2,努力构造这个形式解答;

(3)第一、三项符合立方差公式,再提取公因式即可;

(4)把原式化为(x+3)(x+1)(x﹣1)(x+5)﹣20=(x2+4x+3)(x2+4x﹣5)﹣20,把x2+4x看成整体解答.

解:(1)(2x2﹣3x+1)2﹣22x2+33x﹣1,

=(2x2﹣3x+1)2﹣11(2x2﹣3x+1)+10,

=(2x2﹣3x+1﹣1)(2x2﹣3x+1﹣10),

=(2x2﹣3x)(2x2﹣3x﹣9),

=x(2x﹣3)(2x+3)(x﹣3);

(2)x4+7x3+14x2+7x+1,

=x4+4x3+6x2+4x+1+3x3+6x2+3x+2x2

=[(x+1)2]2+3x(x+1)2+2x2

=[(x+1)2+2x][(x+1)2+x],

=(x2+4x+1)(x2+3x+1);

(3)(x+y)3+2xy(1﹣x﹣y)﹣1

=[(x+y)3﹣1]+2xy(1﹣x﹣y)

=(x+y﹣1)[(x+y)2+x+y+1]﹣2xy(x+y﹣1)

=(x+y﹣1)(x2+y2+x+y+1);

(4)(x+3)(x2﹣1)(x+5)﹣20,

=(x+3)(x+1)(x﹣1)(x+5)﹣20,

=(x2+4x+3)(x2+4x﹣5)﹣20,

=(x2+4x)2﹣2(x2+4x)﹣15﹣20,

=(x2+4x+5)(x2+4x﹣7).

点评:此题主要考查分组分解法分解因式,综合利用了十字相乘法、公式法和提公因式法分解因式,难度较大,要灵活对待,还要有整体思想.

填空题
计算题