问题 解答题

已知p:x2-5x-24≤0,q:x2-4x+4-m2≤0(m>0).若q是p的必要不充分条件,求实数m的取值范围.

答案

由x2-5x-24≤0,得-3≤x≤8;

由x2-4x+4-m2≤0得2-m≤x≤2+m(m>0).

由q是p的必要不充分条件,

即p⇒q,q推不出p,

由p⇒q得

m>0
2-m≤-3
2+m≥8

解得m≥6.故m的取值范围是[6,+∞).

多项选择题
单项选择题