问题
解答题
已知p:A={x|1≤x<3},q:B={x|x2-ax≤x-a,a∈R},若¬p是¬q的充分条件,求实数a的取值范围.
答案
由题意,x2-ax≤x-a
即(x-1)(x-a)≤0,①
又若¬p是¬q的充分条件,⇔q⇒p,
∴q是p的充分条件,
可知B⊆A.
∵A={x|1≤x<3},由于q是p的充分条件,
从而有a≥1,
当a=1时,①的解集为{1},符合B⊆A;
当a>1时,①的解集为[1,a],若B⊆A,
则a<3.
∴1<a<3
综上所述,得实数a的取值范围是[1,3).