问题 问答题

半径为R的光滑半圆环形轨道固定在竖直平面内,从与半圆环相吻合的光滑斜轨上高h=3R处,先后释放A、B两小球,A球的质量为2m,B球的质量为m,当A球运动到圆环最高点时,B球恰好运动到圆环最低点,如图所示.求:

(1)此时A、B球的速度大小vA、vB

(2)这时A、B两球对圆环作用力的合力大小和方向.

答案

(1)对A分析:从斜轨最高点到半圆环形轨道最高点,由机械能守恒得:

2mg(3R-2R)=

1
2
•2m
v2A

解得:vA=

2gR

对B分析:从斜轨最高点到半圆环形轨道最低点,由机械能守恒有:

3mgR=

1
2
m
v2B

解得:vB=

6gR

(2)设半圆环形轨道对A、B的作用力分别为FNA、FNB,FNA方向竖直向下,FNB方向竖直向上.

根据牛顿第二定律得:

FNA+2mg=2m

v2A
R
,FNB-mg=m
v2B
R

解得:FNA=2mg,FNB=7mg.

根据牛顿第三定律,A、B两球对圆环的力分别为:FNA′=2mg,方向竖直向上;FNB′=7mg,方向竖直向下,所以A、B两球对圆环作用力的合力大小F=5mg,方向竖直向下.

答:

(1)此时A、B球的速度大小分别为

2gR
6gR

(2)这时A、B两球对圆环作用力的合力大小5mg,方向竖直向下.

单项选择题
单项选择题