问题 问答题

如图BCD为一半径为R的光滑圆弧面的一部分,C为圆弧的最低点,BD的连线与水平地面平行,∠BOD=106°,AB与圆弧BCD相切于B点,DE与圆弧BCD相切于D点.今将一质量为m的小物块(可视为质点)从F点由静止释放,已知FB两点间距离为5R,小物块与AB、DE间的动摩擦因数均为

1
3
,当地的重力加速度为g.(取sin53°=
4
5
,cos53°=
3
5
)求:

(1)小物块第一次经过B点时的速度; 

(2)小物块第一次经过C点时对C点的压力;

(3)小物块在AB段和DE段经历的总路程之和.

答案

(1)由题意知,根据几何角度,可得斜面倾角为θ=53°

小物块,在斜面上,受力分析:重力G、支持力F、滑动摩擦力f,

由力的分解可得:f=μmgcosθ

从F到B,由动能定理

可得:mg×5R×sin53°-μmgcos53°×5R=

1
2
m
v2B

解之得:vB=

6gR

(2)小物块,从B点到C点,由动能定理得

mg×(R-cos53°R)=

1
2
m
v2C
-
1
2
m
v2B
         (1)

小物块,在C点,受力分析,

则有:F-mg=m

v2C
R
                          (2)

由(1)(2)可联立解得:F=

39
5
mg

(3)只有当小物块到达B点或D点的速度为零时,将只会在BCD间来回往复运动.

因而,小物块,从F点到B点(或D点),由动能定理,

则有:mg•5R×sin53°-μmgcos53°×L=0-0

解得:L=20R

答:(1)小物块第一次经过B点时的速度

6gR
; 

(2)小物块第一次经过C点时对C点的压力

39
5
mg;

(3)小物块在AB段和DE段经历的总路程之和为20R.

单项选择题
单项选择题