光滑水平面上放着质量mA=lkg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C.取g=l0m/s2,求
(1)绳拉断后B的速度VB的大小;
(2)绳拉断过程绳对B的冲量I的大小;
(3)绳拉断过程绳对A所做的功W.
(1)设B在绳被拉断后瞬时的速率为vB,到达C点的速率为vC,
根据B恰能到达最高点C有:
F向=mBg=mB
-----①v 2c R
对绳断后到B运动到最高点C这一过程应用动能定理:
-2mBgR=
mBvc2-1 2
mBvB2---------②1 2
由①②解得:vB=5m/s.
(2)设弹簧恢复到自然长度时B的速率为v1,取向右为正方向,
弹簧的弹性势能转化给B的动能,Ep=
mBv12------③1 2
根据动量定理有:I=mBvB-mBv1 -----------------④
由③④解得:I=-4 N•s,其大小为4N•s
(3)设绳断后A的速率为vA,取向右为正方向,
根据动量守恒定律有:mBv1=mBvB+mAvA-----⑤
根据动能定理有:W=
mAvA2------⑥1 2
由⑤⑥解得:W=8J
答:(1)绳拉断后B的速度VB的大小是5m/s;
(2)绳拉断过程绳对B的冲量I的大小是4N•s;
(3)绳拉断过程绳对A所做的功W是8J.