问题
解答题
有一列数:1,1993,1992,1,1991,1990,1,…,从第三个数起,每一个数都是它前面两个数中大数减小数的差,求从第一个起到1993个数这1993个数之和。
答案
仔细观察这一数列,若把1抽出,则正好成为一个等差数列:1993,1992,1991,1990,…;在原数列中三个数一组出现一个1,则1993个数1993÷3=664…1。可分为664组一个1,即665个1,其余是1993到666这664×2=1328个数。所以前1993个数之和为:
1×665+(666+1993)×1328÷2
=665+2659×1328÷2 =665+1765576
=1766241