问题 填空题

硅是重要的半导体材料,构成了现代电子工业的基础。回答下列问题:

(1)基态Si原子中,电子占据的最高能层符号       ,该能层具有的原子轨道数为      、电子数为         

(2)硅主要以硅酸盐、       等化合物的形式存在于地壳中。

(3)单质硅存在与金刚石结构类似的晶体,其中原子与原子之间以        相结合,其晶胞中共有8个原子,其中在面心位置贡献       个原子。

(4)单质硅可通过甲硅烷(SiH4)分解反应来制备。工业上采用Mg2Si和NH4CI在液氨介质中反应制得SiH4,该反应的化学方程式为              

(5)碳和硅的有关化学键键能如下所示,简要分析和解释下列有关事实:

化学键C-CC-HC-OSi-SiSi-HSi-O
键能(KJ/mol)356413336226318452
①硅与碳同族,也有系列氢化物,但硅烷在种类和数量上都远不如烷烃多,原因是                

②SiH4的稳定性小于CH4,更易生成氧化物,原因是                       

(6)在硅酸盐中,SiO44四面体(如下图a)通过共用顶角氧离子可形成岛状、链状、层状、骨架网状四大类结构型式。图b为一种无限长单链结构的多硅酸根;其中Si原子的杂化形式为            。Si与O的原子数之比为       化学式为   

答案

(1)M;9;4 (2)二氧化硅; (3)共价键;3

(4)Mg2Si+4NH4Cl=SiH4+4NH3+2MgCl2

(5)①硅烷中的Si-Si键和Si-H键的键能小于烷烃分子中C-C键和C-H键的键能,稳定性差,易断裂,导致长链硅烷难以形成,所以硅烷在种类和数量上都远不如烷烃多。

②由于键能越大,物质越稳定,C-H键的键能大于C-O键的键能,故C-H键比C-O键稳定;而Si-H键的键能却远小于Si-O键的键能,所以Si-H键不稳定,而倾向于形成稳定性更强的Si-O键,即更易生成氧化物。

(6)sp3;1:3;[SiO3]n2n(或SiO32)

(1)基态Si原子中,有14个电子,核外电子排布式为1s22s22p63s23p2,电子占据的最高能层符号为M。该能层具有的原子轨道数为1个s轨道,3个p轨道,5个d轨道。

(2)硅主要以硅酸盐、二氧化硅等化合物的形式存在于地壳中。

(3)单质硅存在与金刚石都属于原子晶体,其中原子与原子之间以共价键相结合,其晶胞中共有8个原子,其中在面心位置贡献为6×1/2=3个原子。

(4)Mg2Si和NH4Cl在液氨介质中反应制得SiH4,该反应的化学方程式为Mg2Si + 4NH4Cl=SiH4+4NH3+2MgCl2

(5)①硅与碳同族,也有系列氢化物,但硅烷在种类和数量上都远不如烷烃多,原因是①C—C键和C—H键较强,所形成的烷烃稳定。而硅烷中Si—Si键和Si—H键的键能较低,易断裂,导致长链硅烷难以生成。②SiH4的稳定性小于CH4,更易生成氧化物,原因是C—H键的键能大于C—O键,C—H键比C—O键稳定。而Si—H键的键能却远小于Si—O键,所以Si—H键不稳定而倾向于形成稳定性更强的Si—O键。

(6)中心原子Si原子的杂化形式为sp3,Si与O的原子数之比为1∶3,化学式为[SiO3]n2n-(或SiO32-)。

单项选择题

(A)

Since the 1970s, scientists have been searching for ways to link the brain with computers. Brain-computer interface (BCI) technology could help people with disabilities send commands to machines.

Recently, two researchers, Jose Millan and Michele Tavella from the Federal Polytechnic school in Lausanne, Switzerland, demonstrated (展示) a small robotic wheelchair directed by a person’ s thoughts.

In the laboratory, Tavella operated the wheelchair just by thinking about moving his left or right band. He could even talk as he watched the vehicle and guided it with his thoughts.

"Our brain has billions of nerve ceils. These send signals through the spinal cord (脊髓) to the muscles to give us the ability to move. But spinal cord injuries or other conditions can prevent these weak electrical signals from reaching the muscles," Tavella says. "Our system allows disabled people to communicate with external world and also to control devices."

The researchers designed a special cap for the user. This head cover picks up the signals from the scalp(头皮) and sends them to a computer. The computer interprets the signals and commands the motorized wheelchair. The wheelchair also has two cameras that identify objects in its path. They help the computer react to commands from the brain.

Prof. Millan, the team leader, says scientists keep improving the computer software that interprets brain signals and turns them into simple commands. "The practical possibilities that BCI technology offers to disabled people can be grouped in two categories: communication, and controlling devices. One example is this wheelchair."

He says his team has set two goals. One is testing with real patients, so as to prove that this is a technology they can benefit from. And the other is to guarantee that they can use the technology over long periods of time.

How did Tavella operate the wheelchair in the laboratory()

A. By controlling his muscles

B. By talking to the machine

C. By moving his hand

D. By using his mind

单项选择题 A1/A2型题