问题 选择题

如图所示,两半径不同,内壁光滑的半圆轨道固定在地面上.一个小球先后从与球心在同一水平高度的A、B两点由静止开始自由下滑,通过轨道最低点时(  )

A.小球A对轨道的压力较大

B.小球的向心加速度相同

C.小球的速度相同

D.小球的动能相同

答案

设半圆轨道的半径为r,小球到最低点的速度为v,由机械能守恒定律得:mgr=

1
2
mv2,r越大,到达最低点的动能越大,知两球到达最低点的动能不同.而v=
2gr
,知r越大,小球到达最低点的速度越大,知小球的速度不同.

小球的向心加速度an=

v2
r
=2g,与半径无关,则小球的向心加速度相同.

在最低点,由牛顿第二定律得:FN-mg=m

v2
r
,联立解得;FN=3mg,即压力为3mg,也与半径无关,所以小球对轨道的压力相同.故B正确,A、C、D错误.

故选B.

多项选择题
单项选择题