问题 多选题

如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点.设法让两个小球均在水平面上做匀速圆周运动.已知L1跟竖直方向的夹角为60°,L2跟竖直方向的夹角为30°,下列说法正确的是(  )

A.细线L1和细线L2所受的拉力大小之比为

3
:1

B.小球m1和m2的角速度大小之比为

3
:1

C.小球m1和m2的向心力大小之比为3:1

D.小球m1和m2的线速度大小之比为3

3:1

答案

A、对任一小球研究.设细线与竖直方向的夹角为θ,竖直方向受力平衡,则:

Tcosθ=mg

解得:T=

mg
cosθ

所以细线L1和细线L2所受的拉力大小之比

T1
T2
=
cos30°
cos60°
=
3
,故A正确;

B、小球所受合力的大小为mgtanθ,根据牛顿第二定律得:

mgtanθ=mLsinθω2

得:ω=

g
Lcosθ
.两小球Lcosθ相等,所以角速度相等,故B错误;

C、小球所受合力提供向心力,则向心力为:F=mgtanθ,

小球m1和m2的向心力大小之比为:

F1
F2
=
tan60°
tan30°
=3,故C正确;

D、根据v=ωr,角速度相等,得小球m1和m2的线速度大小之比为:

v1
v2
=
r1
r2
=
tan60°
tan30°
=3,故D错误.

故选:AC

解答题
多项选择题