问题
解答题
观察下面的等式:
152=1×2×100+25=225,
252=2×3×100+25=625,
352=3×4×100+25=1225…
(1)请你用代子表示其中蕴含的一般规律:______;
(2)证明上面的结论.
答案
(1)152=1×(1+1)+25=225,
252=2×(2+1)×100+25=625,
352=3×(3+1)×100+25=1225,
452=4×(4+5)×100+25=2025,
552=5×(5+1)×100+25=3025,
652=6×(6+1)×100+25=4225,
…
∴(10n+5)2=n×(n+1)×100+25;
(2)证明:(10n+5)2=100n2+100n+25,
=100n(n+1)+25,
=n(n+1)×100+25;
∴(10n+5)2=n×(n+1)×100+25.
故答案为:(10n+5)2=n×(n+1)×100+25.