命题p:函数f(x)=ax-2(a>0且a≠1)的图象恒过点(0,-2);命题q:函数f(x)=lg|x|(x≠0)有两个零点.
则下列说法正确的是( )
A.“p或q”是真命题
B.“p且q”是真命题
C.¬p为假命题
D.¬q为真命题
∵函数f(x)=ax恒过定点(0,1),∴函数f(x)=ax-2恒过定点(0,-1),∴命题p为假命题;
∵f(x)=lg|x|=0得:x=±1,∴函数f(x)=lg|x|(x≠0)有两个零点,∴命题q为真命题;
故“p或q”是真命题,“p且q”是假命题,¬p为真命题,¬q为假命题,
故选A.