问题
选择题
若f(x)是R上的奇函数,且f(x)在[0,+∞)上单调递增,则下列结论:
①y=|f(x)|是偶函数;
②对任意的x∈R都有f(-x)+|f(x)|=0;
③y=f(-x)在(-∞,0]上单调递增;
④y=f(x)f(-x)在(-∞,0]上单调递增.
其中正确结论的个数为( )
A.1
B.2
C.3
D.4
答案
∵f(x)是R上的奇函数,且f(x)在[0,+∞)上单调递增,
∴y=|f(x)|是偶函数,故①正确;
对任意的x∈R,不一定有f(-x)+|f(x)|=0,故②不正确;
y=f(-x)在(-∞,0]上单调递减,故③不正确;
y=f(x)f(-x)=-[f(x)]2在(-∞,0]上单调递增,故④正确.
故选B.