已知集合A={1,2,3,…,2n}(n∈N*).对于A的一个子集S,若S满足性质P:“存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m”,则称S为理想集.对于下列命题:
①当n=10时,集合B={x∈A|x>9}是理想集;
②当n=10时,集合C={x∈A|x=3k-1,k∈N*}是理想集;
③当n=1 000时,集合S是理想集,那么集合T={2 001-x|x∈S}也是理想集.
其中的真命题是______(写出所有真命题的序号).
①当n=10时,集合A={1,2,3,…,19,20},B={x∈A|x>9}={10,11,12,…,19,20}不具有性质P,因为对任意不大于10的正整数m,
都可以找到该集合中两个元素b1=10与b2=10+m,使得|b1-b2|=m成立.所以①错误.
②集合C={x∈A|x=3k-1,k∈N*}具有性质P.因为可取m=1<10,对于该集合中任意一对元素c1=3k1-1,c2=3k2-1,k1,k2∈N*
都有|c1-c2|=3|k1-k2|≠1.所以②正确.
③当n=1000时,则A={1,2,3,…,1999,2000},若集合S具有性质P,那么集合T={2001-x|x∈S}一定具有性质P.
因为T={2001-x|x∈S},任取t=2001-x0∈T,其中x0∈S,
因为S⊆A,所以x0∈{1,2,3,…,2000},
从而1≤2001-x0≤2000,即t∈A,所以T⊆A.
由S具有性质P,可知存在不大于1000的正整数m,
使得对S中的任意一对元素s1,s2,都有|s1-s2|≠m.
对于上述正整数m,从集合T={2001-x|x∈S}中任取一对元素t1=2001-x1,t2=2001-x2,其中x1,x2∈S,
则有|t1-t2|=|x1-x2|≠m,
所以集合T={2001-x|x∈S}具有性质P.所以③正确.
故答案为:②③.