问题
选择题
对于函数f(x)=lg|x-2|+1,有下三个命题:
①f(x+2)是偶函数;
②f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;
③f(x+2)-f(x)在区间(2,+∞)上是增函数.
其中正确命题的序号是( )
A.①②
B.①③
C.②③
D.①②③
答案
∵f(x)=lg|x-2|+1,
∴f(x+2)=lg|x+2-2|+1=lg|x|+1是偶函数,
故①正确;
∵f(x)=lg|x-2|+1=
,lg(x-2)+1,x>2 lg(2-x),x<2
∴f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数,
故②正确;
∵f(x)=lg|x-2|+1,
f(x+2)=lg|x+2-2|+1=lg|x|+1,
∴f(x+2)-f(x)=lg|x|-lg|x-2|=lg|
|=lg|1+x x-2
|在区间(2,+∞)上是减函数,2 x-2
故③不正确.
故选A.