问题
解答题
设命题p:a>1;命题q:不等式-3x≤a对一切正实数均成立.
(1)若命题q为真命题,求实数a的取值范围;
(2)命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.
答案
(1)当命题q为真命时,由x>0得3x>1,∴-3x<-1,(4分)
不等式-3x≤a对一切正实数均成立,∴-1≤a(7分)
∴实数a的取值范围是[-1,+∞);(8分)
(2)由命题“p或q”为真,且“p且q”为假,得命题p、q一真一假(10分)
①当p真q假时,则
,无解;(12分)a>1 a<-1
②当p假q真时,则
,得-1≤a≤1,(14分)a≤1 a≥-1
∴实数a的取值范围是[-1,1](15分)