问题 解答题

已知命题p:函数f(x)=x2+mx+1有两个不相同的零点且为负数;命题q:关于x的方程x2-2(m-2)x+m=0没有实数根.

(Ⅰ)求实数m的取值范围,使命题p为真命题;

(Ⅱ)若“p或q”为真命题,“p且q”为假命题,求实数m值的集合.

答案

(Ⅰ)若p真,设两个零点为x1,x2,则由

△=m2-4>0
x1+x2=-m<0
x1x2=1>0
得m>2;

(Ⅱ)若q真,则△=4(m-2)2-4m<0,得1<m<4.

由已知:p,q一真一假,当p真且q假时,由

m>2
m≤1或m≥4
得m≥4;

当p假且q真时,由

m≤2
1<m<4
得1<m≤2,故所求m值的集合为{m|1<m≤2或m≥4}.

单项选择题 A1/A2型题
配伍题 B型题