问题
解答题
设命题p:函数y=lg(ax2-x+a)的定义域为R.命题q:函数y=lg(x2-ax+1)的值域为R.如果命题“p或q”为真命题,命题“p且q”为假命题,求实数a的范围.
答案
若p真,则
,解得a>a>0 (-1)2-4a2<0
.1 2
若q真,则(-a)2-4≥0,解得a≤-2或者a≥2.
因为命题“p或q”为真命题,命题“p且q”为假命题,
所以命题p和q有且仅有一个为真.
所以实数a范围为:a≤-2或
<a<2.1 2