问题
选择题
已知p:存在x∈R,使mx2+1≤0;q:对任意x∈R,恒有x2+mx+1>0.若p或q为假命题,则实数m的取值范围为( )
A.m≥2
B.m≤-2
C.m≤-2,或m≥2
D.-2≤m≤2
答案
若p真则m<0;
若q真,即x2+mx+1>0恒成立,
所以△=m2-4<0,
解得-2<m<2.
因为p或q为假命题,所以p,q全假.
所以有
,m≥0 m≤-2或m≥2
所以m≥2.
故选A