问题 选择题

下列四个命题中的假命题是(  )

A.存在这样的α、β,使得cos(α+β)=cosαcosβ-sinαsinβ

B.不存在无穷多个α、β,使得cos(α+β)=cosαcosβ-sinαsinβ

C.对于任意的α、β,cos(α+β)=cosαcosβ-sinαsinβ

D.不存在这样的α、β,使得cos(α+β)≠cosαcosβ-sinαsinβ

答案

对A,由两角和的余弦定理可知存在这样的α、β,使得cos(α+β)=cosαcosβ+sinαsinβ,故本选项为真命题;

对B,由cos(α+β)=cosαcosβ+sinαsinβ=cosαcosβ-sinαsinβ,得sinαsinβ=0.∴α=kπ或β=kπ(k∈Z),故本选项为假命题.

对C,对于任意的α、β,由两角和的余弦公式可得:cos(α+β)=cosαcosβ-sinαsinβ,故本选项为真命题;

对D,不存在这样的α、β,使得cos(α+β)≠cosαcosβ-sinαsinβ,若存在α,β,则与两角和的余弦公式矛盾,故本选项为真命题;

故选B.

多项选择题
单项选择题