问题 解答题

探索研究

(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是______;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a18=______,an=______;

(2)如果欲求1+3+32+33+…+320的值,可令S=1+3+32+33+…+320

将①式两边同乘以3,得______②

由②减去①式,得S=______.

(3)用由特殊到一般的方法知:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,则an=______(用含a1,q,n的代数式表示),如果这个常数q≠1,那么a1+a2+a3+…+an=______(用含a1,q,n的代数式表示).

答案

(1)每一项与前一项之比是一个常数,这个常数是2,

∴a18=218,an=2n

(2)令s=1+3+32+33+…+320

3S=3+32+33+34+…+321

3S-S=321-1

S=

1
2
(321-1);

(3)∵第二项开始每一项与前一项之比的常数为q,

∴an=a1qn-1

∵Sn=a1+a2+a3+…+an=a1+a1q+a1q2+…+a1qn-1

∴qSn=a1q+a1q2+a1q3+…+a1qn

②-①得:Sn=

a1(qn-1)
q-1

故答案为:2、218、2n;3+32+33+34+…+321

1
2
(321-1);a1qn-1
a1(qn-1)
q-1

选择题
计算题