问题
解答题
观察,分析,猜想并对猜想的正确性予以说明.
1×2×3×4+1=52
2×3×4×5+1=112
3×4×5×6+1=192
4×5×6×7+1=292
n(n+1)(n+2)(n+3)+1=______.(n为整数)
答案
∵1×2×3×4+1=[(1×4)+1]2=52
2×3×4×5+1=[(2×5)+1]2=112
3×4×5×6+1=[(3×6)+1]2=192
4×5×6×7+1=[(4×7)+1]2=292
∴n(n+1)(n+2)(n+3)+4=[n(n+3)+1]2.
故答案为[n(n+3)+1]2.