问题
填空题
有以下两个数串:1,3,5,7,…,1991,1993,1995,1997,1999和1,4,7,10,…,1990,1993,1996,1999,则同时出现在这两个数串中的数的个数为______个.
答案
依题意得:第一串数字表示1到1999的所有奇数,
第二串数字可表示为:3n-2,则1999=3n-2得n=667.
所以第二串数字中有(667+1)÷2=334个奇数,
∴同时出现在这两个数串中的数的个数为 334个.
故答案为:334.