问题
选择题
在△ABC中,三边a、b、c满足|a-32|+|2b-48|+(c-40)2=0,那么△ABC是( )
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
答案
∵|a-32|+|2b-48|+(c-40)2=0,
∴a-32=0,2b-48=0,c-40=0,
∴a=32,b=24,c=40,
∵322+242=1600=402,即a2+b2=c2,
∴△ABC是直角三角形.
故选C.