问题 填空题
先观察下列等式,再回答问题:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

②.
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

根据上面三个等式提供的信息,请猜想
1+
1
42
+
1
52
的结果为______,请按照上各等式反映的规律,写出用n(n为正整数)表示的等式______.
答案

根据上述的三个等式,我们可以得到的规律为律,

1+
1
n2
+
1
(n+1)2
=1
1
n(n+1)
;所以息,
1+
1
42
+
1
52
=1
1
20

单项选择题 A3/A4型题
填空题