问题
解答题
已知:|x+y+1|+|xy-3|=0,求代数式xy3+x3y的值.
答案
∵|x+y+1|+|xy-3|=0,
∴x+y=-1,xy=3
∴x3y+xy3
=xy(x2+y2)
=xy[(x2+y2+2xy)-2xy]
=xy[(x+y)2-2xy]
=3×(1-6)
=-15.
已知:|x+y+1|+|xy-3|=0,求代数式xy3+x3y的值.
∵|x+y+1|+|xy-3|=0,
∴x+y=-1,xy=3
∴x3y+xy3
=xy(x2+y2)
=xy[(x2+y2+2xy)-2xy]
=xy[(x+y)2-2xy]
=3×(1-6)
=-15.