问题
解答题
请观察式子
1×2×3×4+1=52
2×3×4×5+1=112
3×4×5×6+1=192
…
(1)猜想20000×20001×20002×20003+1=______2
(2)请写出一个具有普遍性的结论,并给出证明.
答案
(1)∵1×2×3×4+1=52=(1×4+1)2,
2×3×4×5+1=112=(2×5+1)2,
3×4×5×6+1=192=(3×6+1)2,
…
∴20000×20001×20002×20003+1=(20000×20003+1)2=400060001.
故答案为400060001.
(2)对于一切自然数n,
∵n(n+1)(n+2)(n+3)+1
=n4+3n3+2n2+3n3+9n2+6n+1
=(n2+3n)2+2n(n+3)+1
=[n(n+3)+1]2
=(n2+3n+1)2.