问题
解答题
已知命题A“∃x∈R,x2+(a-1)x+1<0”.
(1)写出命题A的否定;
(2)若命题A是假命题,求出实数a的取值范围.
答案
(1)命题A的否定:∀x∈R,x2+(a-1)x+1≥0;
(2)∵∃x∈R,x2+(a-1)x+1<0为假命题,
∴∀x∈R,x2+(a-1)x+1≥0,
即△=(a-1)2-4≤0,
解得-1≤a≤3.
已知命题A“∃x∈R,x2+(a-1)x+1<0”.
(1)写出命题A的否定;
(2)若命题A是假命题,求出实数a的取值范围.
(1)命题A的否定:∀x∈R,x2+(a-1)x+1≥0;
(2)∵∃x∈R,x2+(a-1)x+1<0为假命题,
∴∀x∈R,x2+(a-1)x+1≥0,
即△=(a-1)2-4≤0,
解得-1≤a≤3.