问题 解答题
用你发现的规律解答下列问题.
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4


(1)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=______.(用含有n的式子表示)
(2)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值为
17
35
,则n=______.
答案

根据分析(1)原式=(1-

1
2
)+(
1
2
-
1
3
)+…(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1

(2)将分式简化即

2n
2n+1
=
2×17
35
,解可得n=17.

故答案为(1)

n
n+1
;(2)17.

判断题
多项选择题