问题
选择题
下列四个命题:
①“∀x∈R,2x+5>0”是全称命题;
②命题“∀x∈R,x2+5x=6”的否定是“∃x0∉R,使x02+5x0≠6”;
③若|x|=|y|,则x=y;
④若p∨q为假命题,则p、q均为假命题.
其中真命题的序号是( )
A.①②
B.①④
C.②④
D.①②③④
答案
①因为命题中含有全称量词∀,所以①是全称命题,所以①正确.
②全称命题的否定是特称命题,所以命题“∀x∈R,x2+5x=6”的否定是“∃x0∈R,使x02+5x0≠6”,所以②错误.
③根据绝对值的意义可知,若|x|=|y|,则x=±y,所以③错误.
④根据复合命题的真假关系可知,若p∨q为假命题,则p、q均为假命题,所以④正确.
故真命题是①④.
故选B.