问题 选择题

若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是(  )

A.平均数为10,方差为2

B.平均数为11,方差为3

C.平均数为11,方差为2

D.平均数为12,方差为4

答案

由题知,x1+1+x2+1+x3+1+…+xn+1=10n,

∴x1+x2+…+xn=10n-n=9n

S12=

1
n
[(x1+1-10)2+(x2+1-10)2+…+(xn+1-10)2]=
1
n
[(x12+x22+x32+…+xn2)-18(x1+x2+x3+…+xn)+81n]=2,

∴(x12+x22+x32+…+xn2)=83n

另一组数据的平均数=

1
n
[x1+2+x2+2+…+xn+2]=
1
n
[(x1+x2+x3+…+xn)+2n]=
1
5
[9n+2n]=
1
n
×11n=11,

另一组数据的方差=

1
n
[(x1+2-11)2+(x2+2-11)2+…+(xn+2-11)2]

=

1
n
[(x12+x22+…+xn2)-18(x1+x2+…+xn)+81n]=
1
n
[83n-18×9n+81n]=2,

故选C.

问答题
单项选择题 A1/A2型题