问题 解答题

已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.

答案

分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.

有三个分界点:-3,1,-1.

(1)当x≤-3时,

y=-(2x+6)-(x-1)+4(x+1)=x-1,

由于x≤-3,所以y=x-1≤-4,y的最大值是-4.

(2)当-3≤x≤-1时,

y=(2x+6)-(x-1)+4(x+1)=5x+11,

由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.

(3)当-1≤x≤1时,

y=(2x+6)-(x-1)-4(x+1)=-3x+3,

由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.

(4)当x≥1时,

y=(2x+6)+(x-1)-4(x+1)=-x+1,

由于x≥1,所以1-x≤0,y的最大值是0.

综上可知,当x=-1时,y取得最大值为6.

单项选择题 配伍题
问答题 简答题