问题
填空题
给出以下四个命题:
①若f(-2)≠f(2),则f(x)不是偶函数;
②当n∈{0,1}时,幂函数y=xn的图象是一条直线;
③命题“若a≠0且b≠0,则ab≠0”的逆否命题;
④三次函数f(x)=ax3+bx2+cx+d有极值的充要条件是b2-3ac≥0.
则其中所有正确命题的序号是______.
答案
①根据偶函数的定义可知,当若函数为偶数,则对任意的x有f(-x)=f(x),当f(-x)≠f(x)时,一定不是偶函数,所以①正确.
②当n=1时,幂函数为直线.但当n=0时,幂函数为y=x0,此时函数的定义域为{x|x≠0},所以此时图象为两条射线,所以②错误.
③命题“若a≠0且b≠0,则ab≠0”的逆否命题是“若ab=0,则a=0或b=0”,所以③正确.
④三次函数的导数为f'(x)=3ax2+2bx+c,要使函数有极值,则a=0,b≠0时,有极值,此时满足b2-3ac≥0.
若a≠0,则有△=4b2-12ac>0,即b2-3ac>0,所以④错误.
故答案为:①③.