问题 解答题

在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).

(1)当k=﹣2时,求反比例函数的解析式;

(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;

(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

答案

解:(1)当k=﹣2时,A(1,﹣2),

∵A在反比例函数图象上,

∴设反比例函数的解析式为:y=

代入A(1,﹣2)得:﹣2=

解得:m=﹣2,

∴反比例函数的解析式为:y=﹣

(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,

∴k<0,

∵二次函数y=k(x2+x﹣1)=k(x+2k的对称轴为:

直线x=﹣

要使二次函数y=k(x2+x﹣1)满足上述条件,

在k<0的情况下,x必须在对称轴的左边,

即x<﹣时,才能使得y随着x的增大而增大,

∴综上所述,k<0且x<﹣

(3)由(2)可得:Q(﹣k),

∵△ABQ是以AB为斜边的直角三角形,

A点与B点关于原点对称,(如图是其中的一种情况)

∴原点O平分AB,

∴OQ=OA=OB,

作AD⊥OC,QC⊥OC,

∴OQ==

∵OA==

=

解得:k=±

选择题
单项选择题