问题 选择题

已知等腰三角形有一个角是40°,那么它腰上的高线和底边的夹角是(  )

A.20°

B.50°

C.20°或50°

D.大小无法确定

答案

当40°的角是顶角时:

∴∠ACB=

180-40
2
=70°

在直角△BCD中,∠CBD=90°-70°=20°;

当40°的角是底角时,

即∠ACB=40°,

在直角△BCD中,∠CBD=90°-∠ACB=50°,

故腰上的高线和底边的夹角是20°或50°.

故选C.

单项选择题
单项选择题