问题 选择题

给出下列命题:

(1)等比数列{an}的公比为q,则“q>1”是“an+1an(n∈N*)”的既不充分也不必要条件;

(2)“x≠1”是“x2≠1”的必要不充分条件;

(3)函数的y=lg(x2+ax+1)的值域为R,则实数-2<a<2;

(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.

其中真命题的个数是(  )

A.1

B.2

C.3

D.4

答案

若首项为负,则公比q>1时,数列为递减数列an+1an(n∈N*),当an+1an(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;

“x≠1”时,“x2≠1”在x=-1时成立,“x2≠1”时,“x≠1”一定成立,故(2)正确

函数的y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的△=a2-4≥0,解得-2≤a≤2,故(3)错误;

“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=±1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误

故选B

选择题
问答题 简答题