问题 问答题

探究能力是物理学研究的重要能力之一.物体因绕轴转动而具有的动能叫转动动能,转动动能的大小与物体转动的角速度有关.为了研究某一砂轮的转动动能Ek与角速度ω的关系.某同学采用了下述实验方法进行探索:如图先让砂轮由动力带动匀速旋转测得其角速度ω,然后让砂轮脱离动力,由于克服转轴间摩擦力做功,砂轮最后停下,测出砂轮脱离动力到停止转动的圈数n,通过分析实验数据,得出结论.经实验测得的几组ω和n如下表所示:

ω/rad•s-10.51234
n5.02080180320
Ek/J______________________________
另外已测得砂轮转轴的直径为1cm,转轴间的摩擦力恒定为10/π(N).

(1)计算出砂轮每次脱离动力的转动动能,并填入上表中.

(2)由上述数据推导出该砂轮的转动动能Ek与角速度ω的关系式为______.

(3)若测得脱离动力后砂轮的角速度为2.5rad/s,则它转过45圈后的角速度为______rad/s.

答案

(1)根据动能定理得:Ek=f•n•πD,代入计算得到数据如下表所示.

ω/rad•s-10.51234
n5.02080180320
Ek/J0.5281832
(2)由表格中数据分析可知,当砂轮的角速度增大为原来2倍时,砂轮的转动动能Ek是原来的4倍,得到关系Ek=kω2.当砂轮的角速度增大为原来4倍时,砂轮的转动动能Ek是原来的16倍,得到Ek与ω2成正比,则有关系式Ek=kω2.k是比例系数.将任一组数据比如:ω=1rad/s,Ek=2J,代入得到k=2J•s/rad,所以砂轮的转动动能Ek与角速度ω的关系式是Ek=2ω2

(3)根据动能定理得

-f•n•πD=2ω22-2ω12

代入解得ω2=2rad/s

故答案为:(1)0.5,2,8,18,32;

          (2)2ω2

          (3)2rad/s

单项选择题
单项选择题