问题 解答题
已知反比例函数y=
k
x
(k≠0,k为常数)和正比例函数y=ax(a≠0,a为常数).
求反比例函数的图象和正比例函数的图象的交点坐标.
答案

解方程组

y=
k
x
y=ax
,∵
k
x
=ax,∴ax2=k,即x2=
k
a

1、当k、a异号时,方程组无解,

2、当k、a同号时:

①当k>0,a>0时,解方程x2=

k
a
得:x1=
ak
a
(
k
a
)
,x2=-
ak
a
(-
k
a
)

当x1=

ak
a
(
k
a
)
时,y1=ax1=
ak
;x2=-
ak
a
(-
k
a
)
时,y2=ax2=-
ak

∴方程组的解为

x1=
ak
a
y1=
ak
x2=-
ak
a
y2=-
ak

②当k<0,a<0时,解方程x2=

k
a
得:x3=-
ak
a
,x4=
ak
a

当x3=-

ak
a
时,y3=ax3=-
ak
;当x4=
ak
a
时,y4=ax4=
ak

∴方程组的解为:

x3=-
ak
a
y3=-
ak
x4=
ak
a
y4=
ak

∴两个函数图象的交点有四个:

当k>0,a>0时为:A(

ak
a
ak
),C(-
ak
a
,-
ak
);

当k<0,a<0时为:B(-

ak
a
,-
ak
),D(
ak
a
ak
).

综合
单项选择题